

Microchannel Flow of SC-CO₂+H₂O system for SEE Process Design

Wentao TANG 14R55024 from Tsinghua University, China

SHIMOYAMA Laboratory *Department of Chemical Engineering*

The Research Group

Academic AdvisorTutorAssoc. Prof.Mr.Yusuke SHIMOYAMASeiji SHINODA

Group Photo

1. Background

Phase diagram of CO₂

SC-CO₂ Extraction for de-caffeine process ↑ http://www.beannorth.com/ourbeans/the-quality/decaffeination-process/

Slug Flow in a microchannel → http://www2.egr.uh.edu/~dli9/research.htm

Nanoparticle System

Mean diameter between 100 nm and 500 nm, SD/Mean < 0.1 (monodispersion).
Biomedical use – drug release, drug targeting, injectable scaffolds.

<u>Supercritical Emulsion Extraction (SEE)</u>•Fast extraction preventing *aggregation*.

Oil phase (polymer dissolved)

Water phase surfactant SC-CO₂

Principle of SEE Adapted from a ppt of Mr. Seiji Shinoda

Aim of the process – to prepare monodispersed *nanoparticles* by means of *supercritical emulsion extraction* (SEE) in a *microchannel*.

Purpose of this research – to study the effect of *liquid/gas ratio* & *temperature* over *slug length*, using SC-CO₂+H₂O as a *simulation* system.

 \rightarrow \rightarrow mass transfer in the process.

2. Method

slugs, calculate the mean.

Electronic balance. $\rightarrow \rightarrow L/G$ ratio calculation.

3. Results

* Emulsion Preparation

- Main concerns mean size & distribution.
- Instruments homogenizer, ultrasonic washer, ultrasonic homogenizer (emulsion preparation), X-ray diffraction, digital microscope (diameter detection).
- Results ultrasonic washer gives single-peak curve; *changed surfactant* stabilizes emulsion.

Effect of L/G (Mass) Ratio

Effect of Temperature

Upward tendency

Decreased surface tension (σ); ...

Downward tendency

Increased volatility ($P_{\rm S}$) of liquid; Decreased viscosity (μ) of liquid; ...

$$\frac{\langle L \rangle}{D} = \left(\frac{\mu_L^2}{\rho D^2 P_S}\right)^{\alpha} \left(\frac{\mu_L^2}{\rho D \sigma}\right)^{\beta} \left(\frac{\mu_L}{\mu_G}\right)^{\gamma} \left(\frac{L}{G}\right)^{\delta}$$

Further study ...

≻Minimizing experimental error.
≻How operational parameters affect slug length.(simulation → real system)
≻How slug length affects the efficiency of the SEE process.

 $\rightarrow \dots \rightarrow$ Insight into the mass transfer for new process design.

~ Thanks for your attention ~